We consider the construction of maximal families of polynomials over the finite field $\mathbb{F}_q$, all having the same degree $n$ and a nonzero constant term, where the degree of the GCD of any two polynomials is $d$ with $1 \le d\le n$. The motivation for this problem lies in a recent construction for subspace codes based on cellular automata. More precisely, the minimum distance of such subspace codes relates to the maximum degree $d$ of the pairwise GCD in this family of polynomials. Hence, characterizing the maximal families of such polynomials is equivalent to determining the maximum cardinality of the corresponding subspace codes for a given minimum distance. We first show a lower bound on the cardinality of such families, and then focus on the specific case where $d=1$. There, we characterize the maximal families of polynomials over the binary field $\mathbb{F}_2$. Our findings prompt several more open questions, which we plan to address in an extended version of this work.
翻译:暂无翻译