The embedding and extraction of useful knowledge is a recent trend in machine learning applications, e.g., to supplement existing datasets that are small. Whilst, as the increasing use of machine learning models in security-critical applications, the embedding and extraction of malicious knowledge are equivalent to the notorious backdoor attack and its defence, respectively. This paper studies the embedding and extraction of knowledge in tree ensemble classifiers, and focuses on knowledge expressible with a generic form of Boolean formulas, e.g., robustness properties and backdoor attacks. For the embedding, it is required to be preservative(the original performance of the classifier is preserved), verifiable(the knowledge can be attested), and stealthy(the embedding cannot be easily detected). To facilitate this, we propose two novel, and effective, embedding algorithms, one of which is for black-box settings and the other for white-box settings.The embedding can be done in PTIME. Beyond the embedding, we develop an algorithm to extract the embedded knowledge, by reducing the problem to be solvable with an SMT (satisfiability modulo theories) solver. While this novel algorithm can successfully extract knowledge, the reduction leads to an NP computation. Therefore, if applying embedding as backdoor attacks and extraction as defence, our results suggest a complexity gap (P vs. NP) between the attack and defence when working with tree ensemble classifiers. We apply our algorithms toa diverse set of datasets to validate our conclusion extensively.


翻译:有用知识的嵌入和提取是机器学习应用中的一种最新趋势,例如,用来补充现有的小数据集。虽然由于在安全关键应用中越来越多地使用机器学习模型,恶意知识的嵌入和提取分别相当于臭名昭著的后门攻击及其防御。本文研究了植入和提取树群群分类器中的知识,并侧重于以布林公式通用形式表达的知识,例如,稳健性能和后门攻击。对于嵌入,必须具有防腐蚀性(分类的原始性能得到保存)、可核实性(知识得到验证)和隐性(嵌入知识不能轻易被检测)。为了促进这一点,我们建议两种新颖和有效的嵌入算法,其中一种用于黑箱设置,另一种用于白箱设置。嵌入可以在PTIME中进行。除了嵌入外,我们还开发一种算法来提取嵌入式知识,通过将问题降低为可溶解的问题,而将SMT的精度的精度应用(可验证)和隐化性(嵌入的算法,如果将SMT, IM 将我们的数据缩的精度的精度排序应用新的算法,则可以将SMLIBLM的解后算结果应用为我们的精化后。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
40+阅读 · 2020年11月22日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
64+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
168+阅读 · 2020年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
9+阅读 · 2021年4月21日
Arxiv
4+阅读 · 2019年2月8日
Arxiv
4+阅读 · 2018年11月26日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
40+阅读 · 2020年11月22日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
64+阅读 · 2020年7月12日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
168+阅读 · 2020年2月13日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
论文浅尝 | Global Relation Embedding for Relation Extraction
开放知识图谱
12+阅读 · 2019年3月3日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
论文浅尝 | Zero-Shot Transfer Learning for Event Extraction
开放知识图谱
25+阅读 · 2018年11月1日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员