This paper proposes a vehicular edge federated learning (VEFL) solution, where an edge server leverages highly mobile connected vehicles' (CVs') onboard central processing units (CPUs) and local datasets to train a global model. Convergence analysis reveals that the VEFL training loss depends on the successful receptions of the CVs' trained models over the intermittent vehicle-to-infrastructure (V2I) wireless links. Owing to high mobility, in the full device participation case (FDPC), the edge server aggregates client model parameters based on a weighted combination according to the CVs' dataset sizes and sojourn periods, while it selects a subset of CVs in the partial device participation case (PDPC). We then devise joint VEFL and radio access technology (RAT) parameters optimization problems under delay, energy and cost constraints to maximize the probability of successful reception of the locally trained models. Considering that the optimization problem is NP-hard, we decompose it into a VEFL parameter optimization sub-problem, given the estimated worst-case sojourn period, delay and energy expense, and an online RAT parameter optimization sub-problem. Finally, extensive simulations are conducted to validate the effectiveness of the proposed solutions with a practical 5G new radio (5G-NR) RAT under a realistic microscopic mobility model.
翻译:本文建议采取车辆边缘联结学习(VEFL)解决方案,即边缘服务器在中央处理器(CPUs)和本地数据集中利用高移动连接车辆(CVS)在中央处理器(CPUs)和本地数据集中利用高移动连接车辆(CVVUs)在中央处理器(CPUs)和本地数据集中进行全球模型培训,以培训全球模型。趋同分析显示,VEFL培训损失取决于CVS在间歇车辆到基础设施(V2I)无线连接方面经过培训的模型的成功接收。由于机动性高,在设备全面参与(FDPC)案中,边缘服务器根据CVS数据集大小和间隔期的加权组合,将客户客户模型参数汇总成加权组合,同时在部分设备参与(PDPC)案件中选择一组CVS(CVVS) CVS(CS),然后我们设计联合VEFL和无线电访问技术(RAT)参数,在延迟、能源和成本限制下优化当地培训模型成功接收的可能性最大化。考虑到优化问题很硬,我们将其归入VEFLRAT(RAT)的参数,在最现实、最不现实、最短的RAT(RG)下,在最后一级进行最短的放射性模拟的模拟进行新的成本成本验证。