In this work, we investigate an online service management problem in vehicular edge computing networks. To satisfy the varying service demands of mobile vehicles, a service management framework is required to make decisions on the service lifecycle to maintain good network performance. We describe the service lifecycle consists of creating an instance of a given service (\textit{scale-out}), moving an instance to a different edge node (\textit{migration}), and/or termination of an underutilized instance (\textit{scale-in}). In this paper, we propose an efficient online algorithm to perform service management in each time slot, where performance quality in the current time slot, the service demand in future time slots, and the minimal observed delay by vehicles and the minimal migration delay are considered while making the decisions on service lifecycle. Here, the future service demand is computed from a gated recurrent unit (GRU)-based prediction model, and the network performance quality is estimated using a deep reinforcement learning (DRL) model which has the ability to interact with the vehicular environment in real-time. The choice of optimal edge location to deploy a service instance at different times is based on our proposed optimization formulations. Simulation experiments using real-world vehicle trajectories are carried out to evaluate the performance of our proposed demand-prediction based online service management (DOSM) framework against different state-of-the-art solutions using several performance metrics.


翻译:在本工作中,我们研究了车载边缘计算网络中的在线服务管理问题。为了满足移动车辆的不断变化的服务需求,需要一个服务管理框架来决策服务生命周期,以维持良好的网络性能。我们描述了服务生命周期,包括创建给定服务的实例(\textit{scale-out}),将实例移动到不同的边缘节点(\textit{migration}),和/或终止未充分利用的实例(\textit{scale-in})。在本文中,我们提出了一种高效的在线算法来执行每个时间段内的服务管理,决策服务生命周期时考虑当前时间段内的性能质量,未来时间段内的服务需求,车辆最小观察延迟和最小迁移延迟。这里,未来的服务需求是由基于门控循环单元(GRU)的预测模型计算的,并且使用具有实时与车载环境交互能力的深度强化学习(DRL)模型来估计网络性能质量。在不同时间部署服务实例的最佳边缘位置的选择基于我们提出的优化公式。使用真实的车辆轨迹进行的仿真实验,以几个性能度量来评估我们提出的基于需求预测的在线服务管理(DOSM)框架与不同的现有解决方案的性能。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【边缘智能综述论文】A Survey on Edge Intelligence
专知会员服务
119+阅读 · 2020年3月30日
【文献综述】边缘计算与深度学习的融合综述论文
专知会员服务
164+阅读 · 2019年12月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
如何在云中部署低延迟解决方案
InfoQ
0+阅读 · 2022年8月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
25+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
如何在云中部署低延迟解决方案
InfoQ
0+阅读 · 2022年8月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
25+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员