We investigate the minimax optimal error of a fair regression problem under a linear model employing the demographic parity as a fairness constraint. As a tractable demographic parity constraint, we introduce $(\alpha,\delta)$-fairness consistency, meaning that the quantified unfairness is decreased at most $n^{-\alpha}$ rate with at least probability $1-\delta$, where $n$ is the sample size. In other words, the consistently fair algorithm eventually outputs a regressor satisfying the demographic parity constraint with high probability as $n$ tends to infinity. As a result of our analyses, we found that the minimax optimal error under the $(\alpha,\delta)$-fairness consistency constraint is $\Theta(\frac{dM}{n})$ provided that $\alpha \le \frac{1}{2}$, where $d$ is the dimensionality, and $M$ is the number of groups induced from the sensitive attributes. This is the first study revealing minimax optimality for the fair regression problem under a linear model.
翻译:我们用一个线性模型来调查公平回归问题的最小最佳错误。 使用人口均等作为公平制约。 作为可移植的人口均等限制, 我们引入了美元( alpha,\delta) 美元- 公平一致性的最小最佳错误, 这意味着量化的不公平性以美元- alpha美元( 美元) 的汇率下降, 至少概率为$- delta美元( 美元是样本大小 ) 。 换句话说, 一贯的公平算法最终产生一个递减者, 满足人口均等限制, 概率高, 以美元为无限值。 由于我们的分析, 我们发现美元( alpha,\ delta) 美元( delta) 美元( $\ lac{ d ⁇ n} 美元) 的最小最佳误差, 条件是$\ alpha\ le le le le frac {1 ⁇ 2美元( 美元) 是来自敏感属性的群数。 这是第一项研究, 揭示了线性模型下公平回归问题最小最佳性。