Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT literature has been extremely limited, in good part because of the lack of comprehensive studies and accessible software tools. This paper provides guidance for practitioners on semiparametric IRT models and their implementation. In particular, we rely on NIMBLE, a flexible software system for hierarchical models that enables the use of Dirichlet process mixtures. We highlight efficient sampling strategies for model estimation and compare inferential results under parametric and semiparametric models.
翻译:项目反应理论(IRT)模型通常依赖对特定主题潜在特性的正常假设,而在实践中这种假设往往不切实际。基于Drichlet工艺混合物的半参数扩展更灵活地表示潜在特性的未知分布。然而,在IRT文献中使用这种模型极为有限,这在很大程度上是因为缺乏全面研究和可获取的软件工具。本文件为从业人员提供了关于半参数IRT模型及其实施的指导。特别是,我们依赖NNUBBL,这是一个用于使用Drichlet工艺混合物的等级模型的灵活软件系统。我们强调用于模型估计和比较参数和半参数模型下的推断结果的有效抽样战略。