The lifted dynamic junction tree algorithm (LDJT) efficiently answers filtering and prediction queries for probabilistic relational temporal models by building and then reusing a first-order cluster representation of a knowledge base for multiple queries and time steps. We extend LDJT to (i) solve the smoothing inference problem to answer hindsight queries by introducing an efficient backward pass and (ii) discuss different options to instantiate a first-order cluster representation during a backward pass. Further, our relational forward backward algorithm makes hindsight queries to the very beginning feasible. LDJT answers multiple temporal queries faster than the static lifted junction tree algorithm on an unrolled model, which performs smoothing during message passing.
翻译:解除的动态接合树算法(LDJT)通过建立和再使用知识库的第一阶群集代表多个查询和时间步骤,有效解答关于概率关系时间模型的过滤和预测询问。我们将LDJT推广到(一) 解决平滑的推论问题,通过引入高效的后向传球回答后视问题,(二) 讨论在后向传球中即时解析第一阶群的各种不同选项。此外,我们的前向后向后向算法让后视查询非常可行。 LDJT在无滚动模型上比静态解除接合树算法更快地回答多个时间查询,后者在信息传递时表现平稳。