The lambda calculus is a universal programming language. It can represent the computable functions, and such offers a formal counterpart to the point of view of functions as rules. Terms represent functions and this allows for the application of a term/function to any other term/function, including itself. The calculus can be seen as a formal theory with certain pre-established axioms and inference rules, which can be interpreted by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as $ D_\infty$, to represent the $\lambda$-terms as the typical functions of set theory, where it is not allowed to apply a function to itself. Here we propose a construction of an $\infty$-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case $D_\infty$, and we see that the Scott topology does not provide enough information about the relationship between higher homotopies. This motivates a new line of research focused on the exploration of $\lambda$-models with the structure of a non-trivial $\infty$-groupoid to generalize the proofs of term conversion (e.g., $\beta$-equality, $\eta$-equality) to higher-proofs in $\lambda$-calculus.
翻译:ambda 计算器是一种通用的编程语言。 它可以代表可计算性函数, 并提供一个正式的对应方, 作为规则的功能观点。 术语代表功能, 允许对包括自身在内的任何其他任期/ 功能应用术语/ 函数。 计算器可以被视为一种正式理论, 包含某些预设的轴法和推论规则, 可由模型来解释 。 Dana Scott 提议了第一个非三进制的 lambda 计算器模型, 称为 D ⁇ infty $, 以代表 $lambda 术语的典型功能, 将 $lambda 术语作为设置理论的典型功能, 不允许将函数应用到它本身。 这里我们建议从任何具有地貌学的羊羔模型中构建一个$\ inty- group 。 我们用这个模型来解释这个特定案例 $D ⁇ infty, 并且我们看到Scottolog 无法提供足够的关于更高同质关系的信息。 这激励了一条新的研究线, 侧重于 $\\\ lambtaludealalal- group of $ $ $ baltialtial- cal- cal- groups.