The normalization of brain recordings from multiple subjects responding to the natural stimuli is one of the key challenges in auditory neuroscience. The objective of this normalization is to transform the brain data in such a way as to remove the inter-subject redundancies and to boost the component related to the stimuli. In this paper, we propose a deep learning framework to improve the correlation of electroencephalography (EEG) data recorded from multiple subjects engaged in an audio listening task. The proposed model extends the linear multi-way canonical correlation analysis (CCA) for audio-EEG analysis using an auto-encoder network with a shared encoder layer. The model is trained to optimize a combined loss involving correlation and reconstruction. The experiments are performed on EEG data collected from subjects listening to natural speech and music. In these experiments, we show that the proposed deep multi-way CCA (DMCCA) based model significantly improves the correlations over the linear multi-way CCA approach with absolute improvements of 0.08 and 0.29 in terms of the Pearson correlation values for speech and music tasks respectively.


翻译:在本文中,我们提出一个深层次学习框架,以改善对自然刺激做出反应的多个学科的大脑记录,这是听觉神经科学面临的主要挑战之一。这一正常化的目标是转变大脑数据,以消除学科间冗余现象,并增强与刺激有关的部分。在本文中,我们提议一个深层次学习框架,以改善从参与听音任务的多个学科中记录的电脑摄影数据的相关性。拟议的模型扩展了用于使用具有共同编码层的自动编码网络进行音频-电离层分析的线性多线性多线性相向分析(CCA),该模型旨在优化涉及相关关系和重建的合并损失。该模型是在从听自然演讲和音乐的学科中收集的电离子数据上进行的实验。在这些实验中,我们表明,拟议的深层多线性声学(DMCA)模型极大地改进了线性多线性多线性声学方法的关联性关系,分别对语音和音乐任务Pearson相关值做了0.08和0.29的绝对改进。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员