Various methods of combining individual p-values into one p-value are widely used in many areas of statistical applications. We say that a combining method is valid for arbitrary dependence (VAD) if it does not require any assumption on the dependence structure of the p-values, whereas it is valid for some dependence (VSD) if it requires some specific, perhaps realistic but unjustifiable, dependence structures. The trade-off between validity and efficiency of these methods is studied via analyzing the choices of critical values under different dependence assumptions. We introduce the notions of independence-comonotonicity balance (IC-balance) and the price for validity. In particular, IC-balanced methods always produce an identical critical value for independent and perfectly positively dependent p-values, a specific type of insensitivity to a family of dependence assumptions. We show that, among two very general classes of merging methods commonly used in practice, the Cauchy combination method and the Simes method are the only IC-balanced ones. Simulation studies and a real data analysis are conducted to analyze the sizes and powers of various combining methods in the presence of weak and strong dependence.
翻译:在统计应用的许多领域,广泛采用各种方法将个别的P值合并成一个 p值。我们说,如果一种综合方法不要求对p值的依赖性结构作任何假设,它对于任意依赖性(VAD)是有效的,如果它需要某些具体、也许现实但不合理的依赖性结构,它对于某种依赖性(VSD)是有效的。这些方法的有效性与效率之间的权衡是通过分析不同依赖性假设下的关键值的选择来研究的。我们引入了独立-共性平衡(IC-平衡)和有效性价格的概念。特别是,IC平衡方法对于独立和完全积极的依赖性p值总是具有相同的关键价值,而对于依赖性假设是某种特定类型的不敏感。我们表明,在通常使用的两种非常一般的合并方法类别中,只有卡索混合法和Simes方法是IC平衡的方法。我们进行了模拟研究和真实的数据分析,以分析脆弱和强烈依赖性情况下各种组合方法的规模和力量。