Neural architecture search (NAS) has shown great promise in designing state-of-the-art (SOTA) models that are both accurate and efficient. Recently, two-stage NAS, e.g. BigNAS, decouples the model training and searching process and achieves remarkable search efficiency and accuracy. Two-stage NAS requires sampling from the search space during training, which directly impacts the accuracy of the final searched models. While uniform sampling has been widely used for its simplicity, it is agnostic of the model performance Pareto front, which is the main focus in the search process, and thus, misses opportunities to further improve the model accuracy. In this work, we propose AttentiveNAS that focuses on improving the sampling strategy to achieve better performance Pareto. We also propose algorithms to efficiently and effectively identify the networks on the Pareto during training. Without extra re-training or post-processing, we can simultaneously obtain a large number of networks across a wide range of FLOPs. Our discovered model family, AttentiveNAS models, achieves top-1 accuracy from 77.3% to 80.7% on ImageNet, and outperforms SOTA models, including BigNAS and Once-for-All networks. We also achieve ImageNet accuracy of 80.1% with only 491 MFLOPs. Our training code and pretrained models are available at https://github.com/facebookresearch/AttentiveNAS.
翻译:神经结构搜索(NAS)在设计精确和高效的现代模型方面显示了巨大的希望。最近,两个阶段的NAS,例如BigNAS,分解模型培训和搜索过程,并实现显著的搜索效率和准确性。两个阶段的NAS要求在培训期间从搜索空间取样,直接影响到最后搜索模型的准确性。虽然统一取样已被广泛用于简单化,但它是模型性能Pareto前方模型的不可知性,而该模型是搜索过程的主要焦点,因此失去了进一步提高模型准确性的机会。在这项工作中,我们提议“加强NAS,重点是改进取样战略,以提高绩效。我们还提出算法,以便在培训期间高效和有效地确定Pareto网络上的网络。不进行额外的再培训或后处理,我们就可以同时获得一系列广泛的FLUP/ROP模型的网络。我们发现的模型家族“TenNAS”模型在77.3%到80.7%的SAPNAS-AFAR 网络上实现顶级的准确性精确度,包括我们图像S-NUA网络的S-O-NLAS-NE-NAR AS-NAR AS-NLAS-NAR AS-NAR AS-NAR-NAR-M1-NAR-M1-M1-M1-MIS-NAR-M1-M1-I-I-S-S-S-S-S-S-S-S-S-S-S-S-S-S-NAR-I-S-NAR-S-NAR-I-I-S-S-S-S-NAR-S-I-I-I-S-I-I-I-I-I-S-S-S-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-S-S-S-S-S-S-S-S-S-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-I-