AI-powered systems have gained widespread popularity in various domains, including Autonomous Vehicles (AVs). However, ensuring their reliability and safety is challenging due to their complex nature. Conventional test adequacy metrics, designed to evaluate the effectiveness of traditional software testing, are often insufficient or impractical for these systems. White-box metrics, which are specifically designed for these systems, leverage neuron coverage information. These coverage metrics necessitate access to the underlying AI model and training data, which may not always be available. Furthermore, the existing adequacy metrics exhibit weak correlations with the ability to detect faults in the generated test suite, creating a gap that we aim to bridge in this study. In this paper, we introduce a set of black-box test adequacy metrics called "Test suite Instance Space Adequacy" (TISA) metrics, which can be used to gauge the effectiveness of a test suite. The TISA metrics offer a way to assess both the diversity and coverage of the test suite and the range of bugs detected during testing. Additionally, we introduce a framework that permits testers to visualise the diversity and coverage of the test suite in a two-dimensional space, facilitating the identification of areas that require improvement. We evaluate the efficacy of the TISA metrics by examining their correlation with the number of bugs detected in system-level simulation testing of AVs. A strong correlation, coupled with the short computation time, indicates their effectiveness and efficiency in estimating the adequacy of testing AVs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员