We study generalization under labeled shift for categorical and general normed label spaces. We propose a series of methods to estimate the importance weights from labeled source to unlabeled target domain and provide confidence bounds for these estimators. We deploy these estimators and provide generalization bounds in the unlabeled target domain.


翻译:我们研究在标签的转换下对绝对和一般规范标签空间进行概括化研究,我们提出了一系列方法来估计从标签来源到未标签目标域的重要性,并为这些估计者提供信任界限。我们部署这些估计者,并在无标签目标域提供一般化界限。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年7月31日
专知会员服务
14+阅读 · 2021年5月21日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
5+阅读 · 2020年3月17日
Arxiv
5+阅读 · 2018年10月4日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员