Researchers are increasingly focusing on intelligent games as a hot research area.The article proposes an algorithm that combines the multi-attribute management and reinforcement learning methods, and that combined their effect on wargaming, it solves the problem of the agent's low rate of winning against specific rules and its inability to quickly converge during intelligent wargame training.At the same time, this paper studied a multi-attribute decision making and reinforcement learning algorithm in a wargame simulation environment, and obtained data on red and blue conflict.Calculate the weight of each attribute based on the intuitionistic fuzzy number weight calculations. Then determine the threat posed by each opponent's chess pieces.Using the red side reinforcement learning reward function, the AC framework is trained on the reward function, and an algorithm combining multi-attribute decision-making with reinforcement learning is obtained. A simulation experiment confirms that the algorithm of multi-attribute decision-making combined with reinforcement learning presented in this paper is significantly more intelligent than the pure reinforcement learning algorithm.By resolving the shortcomings of the agent's neural network, coupled with sparse rewards in large-map combat games, this robust algorithm effectively reduces the difficulties of convergence. It is also the first time in this field that an algorithm design for intelligent wargaming combines multi-attribute decision making with reinforcement learning.Attempt interdisciplinary cross-innovation in the academic field, like designing intelligent wargames and improving reinforcement learning algorithms.


翻译:文章提出一种算法,将多归性管理和强化学习方法结合起来,并结合这些算法对作战法的影响,它解决了代理人在特定规则下获胜率低的问题,并且无法在智能作战训练中迅速汇合。 与此同时,本文研究了在战争游戏模拟环境中的多归性决策和强化学习算法,并获得了关于红和蓝冲突的强化数据。根据直觉式模糊数字重量计算,计算出每个属性的重量。然后确定每个对手的棋棋子构成的威胁。 红色侧强化学习奖赏功能,对AC框架进行了有关奖励功能的培训,以及将多归性决策与强化学习相结合的算法。一个模拟实验证实,多归性决策的算法,加上本文提出的强化学习,比纯加固性学习算法要聪明得多。 解决代理人神经网络的缺陷,加上大规模战斗游戏中的微变异性报酬,这个精细的计算法, 也有效地将智能战场的学习困难合并起来。

0
下载
关闭预览

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【图与几何深度学习】Graph and geometric deep learning,49页ppt
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
7+阅读 · 2018年12月26日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
逆强化学习几篇论文笔记
CreateAMind
9+阅读 · 2018年12月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员