We consider stochastic optimization problems which use observed data to estimate essential characteristics of the random quantities involved. Sample average approximation (SAA) or empirical (plug-in) estimation are very popular ways to use data in optimization. It is well known that sample average optimization suffers from downward bias. We propose to use smooth estimators rather than empirical ones in optimization problems. We establish consistency results for the optimal value and the set of optimal solutions of the new problem formulation. The performance of the proposed approach is compared to SAA theoretically and numerically. We analyze the bias of the new problems and identify sufficient conditions for ensuring less biased estimation of the optimal value of the true problem. At the same time, the error of the new estimator remains controlled. We show that those conditions are satisfied for many popular statistical problems such as regression models, classification problems, and optimization problems with Average (Conditional) Value-at-Risk. We have observed that smoothing the least-squares objective in a regression problem by a normal kernel leads to a ridge regression. Our numerical experience shows that the new estimators frequently exhibit also smaller variance and smaller mean-square error than those of SAA.


翻译:我们考虑了使用观测数据估计随机数量基本特征的随机优化问题。样本平均近似(SAA)或实验性(插件)估算是利用数据优化的非常流行的方法。众所周知,样本平均优化存在下降偏差。我们提议在优化问题中采用平滑的估算器,而不是经验性优化。我们为新问题表述的最佳价值和一套最佳解决办法确定一致的结果。拟议方法的性能与SAA理论和数值比较。我们分析了新问题的偏向性,并确定了确保对真正问题的最佳价值进行不那么偏差的估计的充足条件。与此同时,新的估算器的错误仍然得到控制。我们表明,对于许多流行的统计问题,如回归模型、分类问题和平均(条件性)价值-风险的优化问题,这些条件都得到满足。我们观察到,在正常内核回归问题中,最差的客观目标通过正常内核导致脊回归。我们的数字经验表明,新的估量器经常出现较小差异,而中的平均比例差也较小。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
专知会员服务
52+阅读 · 2020年9月7日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员