Learning complex time series forecasting models usually requires a large amount of data, as each model is trained from scratch for each task/data set. Leveraging learning experience with similar datasets is a well-established technique for classification problems called few-shot classification. However, existing approaches cannot be applied to time-series forecasting because i) multivariate time-series datasets have different channels and ii) forecasting is principally different from classification. In this paper we formalize the problem of few-shot forecasting of time-series with heterogeneous channels for the first time. Extending recent work on heterogeneous attributes in vector data, we develop a model composed of permutation-invariant deep set-blocks which incorporate a temporal embedding. We assemble the first meta-dataset of 40 multivariate time-series datasets and show through experiments that our model provides a good generalization, outperforming baselines carried over from simpler scenarios that either fail to learn across tasks or miss temporal information.
翻译:学习复杂时间序列预测模型通常需要大量的数据,因为每个模型都是从零开始对每个任务/数据集进行培训的。利用类似数据集的学习经验是分类问题的既定技术,称为 " 微粒分类 " 。但是,现有方法不能适用于时间序列预测,因为(一) 多变量时间序列数据集有不同的渠道,(二) 预测与分类大不相同。在本文件中,我们首次正式确定了对具有不同频道的时间序列进行微小的预测的问题。在矢量数据中推广关于不同属性的近期工作,我们开发了一个包含时间嵌入的变异性深层数据集模型。我们收集了40个多变量时间序列数据集的第一个元数据集,并通过实验表明我们的模型提供了良好的概括性,超过了从简单假设中结转的、无法在任务中学习或错过时间信息的有效基线。