We study the behavior of a real $p$-dimensional Wishart random matrix with $n$ degrees of freedom when $n,p\rightarrow\infty$ but $p/n\rightarrow 0$. We establish the existence of phase transitions when $p$ grows at the order $n^{(K+1)/(K+3)}$ for every $k\in\mathbb{N}$, and derive expressions for approximating densities between every two phase transitions. To do this, we make use of a novel tool we call the G-transform of a distribution, which is closely related to the characteristic function. We also derive an extension of the $t$-distribution to the real symmetric matrices, which naturally appears as the conjugate distribution to the Wishart under a G-transformation, and show its empirical spectral distribution obeys a semicircle law when $p/n\rightarrow 0$. Finally, we discuss how the phase transitions of the Wishart distribution might originate from changes in rates of convergence of symmetric $t$ statistics.
翻译:我们研究真实的美元维度Wishart随机矩阵的行为,该矩阵以零美元的自由度为单位,当美元,p\rightrow\infty$,但美元/n\rightrown 0美元时,我们研究真实的美元维度Wishart随机矩阵的行为。当美元(K+1)/(K+3)以美元为单位增长时,我们确定存在阶段过渡。我们为此,我们使用我们称之为分配G- Transform的新工具,该工具与特性功能密切相关。我们还将美元分配扩展至真实的对称矩阵,这自然看起来像在G- transformation下对Wishart的共振分布,并显示其经验光谱分布符合半轴法,当美元/nrightrown 0美元时。最后,我们讨论Wishart分布的阶段转变可能如何产生于对称美元统计数据汇率的变化。