We present a Machine Learning (ML) study case to illustrate the challenges of clinical translation for a real-time AI-empowered echocardiography system with data of ICU patients in LMICs. Such ML case study includes data preparation, curation and labelling from 2D Ultrasound videos of 31 ICU patients in LMICs and model selection, validation and deployment of three thinner neural networks to classify apical four-chamber view. Results of the ML heuristics showed the promising implementation, validation and application of thinner networks to classify 4CV with limited datasets. We conclude this work mentioning the need for (a) datasets to improve diversity of demographics, diseases, and (b) the need of further investigations of thinner models to be run and implemented in low-cost hardware to be clinically translated in the ICU in LMICs. The code and other resources to reproduce this work are available at https://github.com/vital-ultrasound/ai-assisted-echocardiography-for-low-resource-countries.
翻译:我们提出一个机器学习(ML)研究案例,以说明实时AI-Em动力回声心电学系统临床翻译的挑战,该系统载有LMICs中伊斯兰法院联盟病人的数据。这种ML案例研究包括:从LMICs中31个伊斯兰法院联盟病人的2D超声波视频中进行数据准备、整理和贴标签,以及模型选择、验证和部署3个薄神经网络,以对4组四组观点进行分类。ML神经学的结果表明,稀薄网络在用有限的数据集对4CV进行分类方面有望得到实施、验证和应用。我们结束这项工作时提到:(a) 需要建立数据集,以改善人口、疾病的多样性,以及(b) 需要进一步调查以低成本硬件运行和实施的稀薄模型,以便在LMICs的伊斯兰法院联盟中进行临床翻译。在https://github.com/vital-ultrasound/ai-assy-echoardgragraph-for-lowresourat-costratesies。