The (weak) Nullstellensatz over finite fields says that if $P_1,\ldots,P_m$ are $n$-variate degree-$d$ polynomials with no common zero over a finite field $\mathbb{F}$ then there are polynomials $R_1,\ldots,R_m$ such that $R_1P_1+\cdots+R_mP_m \equiv 1$. Green and Tao [Contrib. Discrete Math. 2009, Proposition 9.1] used a regularity lemma to obtain an effective proof, showing that the degrees of the polynomials $R_i$ can be bounded independently of $n$, though with an Ackermann-type dependence on the other parameters $m$, $d$, and $|\mathbb{F}|$. In this paper we use the polynomial method to give a proof with a degree bound of $md(|\mathbb{F}|-1)$. We also show that the dependence on each of the parameters is the best possible up to an absolute constant. We further include a generalization, offered by Pete L. Clark, from finite fields to arbitrary subsets in arbitrary fields, provided the polynomials $P_i$ take finitely many values on said subset.
翻译:(weak) Nullstellensatz 上的限制字段表示,如果$P_1,\ldolts,P_m$是固定值,以获得有效证据,表明多式数字仪的等级可以不受美元约束,尽管Ackermann类型依赖于其他参数,但用美元、美元和美元来证明。在本文件中,我们使用多种多式方法,用美元(mathbb)的限度来证明。我们用最高标准仪的绝对值来证明,我们用最高标准(mathbs)的等级来证明。我们用普通标准向普通标准字段提供的绝对值来证明,我们用最高标准向最高标准字段提供的绝对值,我们用普通标准向最低标准字段提供的绝对值来证明。