Accurately modeling power distribution grids is crucial for designing effective monitoring and decision making algorithms. This paper addresses the partial observability issue of data-driven distribution modeling in order to improve the accuracy of line parameter estimation. Inspired by the sparse changes in residential loads, we advocate to regularize the group sparsity of the unobservable injections in a bi-linear estimation problem. The alternating minimization scheme of guaranteed convergence is proposed to take advantage of convex subproblems with efficient solutions. Numerical results using real-world load data on the single-phase equivalent of the IEEE 123-bus test case have demonstrated the accuracy improvements of the proposed solution over existing work for both parameter estimation and voltage modeling.
翻译:准确建模的电源分配网格对于设计有效的监测和决策算法至关重要,本文件述及数据驱动的分布模型部分可观测性问题,以提高线性参数估计的准确性。在住宅负荷变化稀少的启发下,我们主张将双线估计问题中无法观测的注入群体宽度规范化。提出保证汇合的交替最小化计划是为了利用与有效解决方案的共性子问题。使用IEE 123-Bus测试案单阶段等值的实时载荷数据得出的数值结果,显示了参数估计和电压模型现有工作的拟议解决方案的准确性改进。