We present ReCo, a contrastive learning framework designed at a regional level to assist learning in semantic segmentation. ReCo performs semi-supervised or supervised pixel-level contrastive learning on a sparse set of hard negative pixels, with minimal additional memory footprint. ReCo is easy to implement, being built on top of off-the-shelf segmentation networks, and consistently improves performance in both semi-supervised and supervised semantic segmentation methods, achieving smoother segmentation boundaries and faster convergence. The strongest effect is in semi-supervised learning with very few labels. With ReCo, we achieve 50% mIoU in the CityScapes dataset, whilst requiring only 20 labelled images, improving by 10% relative to the previous state-of-the-art. Code is available at \url{https://github.com/lorenmt/reco}.
翻译:我们介绍了一个区域级的对比式学习框架ReCo, 这个框架旨在帮助学习语义分离。 reCo 在一个零散的硬负像素上进行半监督或监督的像素级对比学习, 并极少增加记忆足迹。 reCo 很容易实施, 建在现成分离网络的顶部, 并不断提高半监督和监督的语义分离方法的性能, 实现更平稳的分解界限和更快的趋同。 最强烈的效果是, 以极少的标签进行半监督的学习。 我们与 ReCo 合作, 在CityScapes数据集中实现了50% mIOU, 只需要20个标注图像, 比以前的艺术状态改善10%。 代码可在 url{https://github.com/loenmt/reco}查阅 。