This article presents the first results from using a learning classifier system capable of performing adaptive computation with deep neural networks. Individual classifiers within the population are composed of two neural networks. The first acts as a gating or guarding component, which enables the conditional computation of an associated deep neural network on a per instance basis. Self-adaptive mutation is applied upon reproduction and prediction networks are refined with stochastic gradient descent during lifetime learning. The use of fully-connected and convolutional layers are evaluated on handwritten digit recognition tasks where evolution adapts (i) the gradient descent learning rate applied to each layer (ii) the number of units within each layer, i.e., the number of fully-connected neurons and the number of convolutional kernel filters (iii) the connectivity of each layer, i.e., whether each weight is active (iv) the weight magnitudes, enabling escape from local optima. The system automatically reduces the number of weights and units while maintaining performance after achieving a maximum prediction error.
翻译:本篇文章介绍了使用学习分类系统取得的第一个结果,该系统能够运用深神经网络进行适应性计算;人口中的个人分类由两个神经网络组成;第一种作为格子或保护部分,可按实例对相关的深神经网络进行有条件的计算;在复制时采用自我适应性突变,预测网络在一生学习期间以随机梯度梯度下降进行精细化;在进化适应以下条件的手写数字识别任务的情况下,对完全连接和变动层进行评估:(一) 每一层的梯度下沉学习率;(二) 每个层的单位数目,即完全连接的神经数目和卷心室过滤器的数目;(三) 每个层的连接性,即每个重量是否活跃(四) 重量大小,从而能够逃离本地opima。这个系统在达到最大预测误差后保持性能的同时,自动减少重量和单位的数目。