We analyze the convergence of quasi-Newton methods in exact and finite precision arithmetic. In particular, we derive an upper bound for the stagnation level and we show that any sufficiently exact quasi-Newton method will converge quadratically until stagnation. In the absence of sufficient accuracy, we are likely to retain rapid linear convergence. We confirm our analysis by computing square roots and solving bond constraint equations in the context of molecular dynamics. We briefly discuss implications for parallel solvers.
翻译:我们分析确定性和有限精度算术中准牛顿方法的收敛性。特别地,我们导出了停滞级别的上界,并展示了任意足够精确的准牛顿方法会在停滞之前二次收敛。在缺乏足够精确度的情况下,我们很可能保留快速的线性收敛性。我们通过计算分子动力学中的平方根和求解债务约束方程来确认我们的分析。我们简要讨论了并行求解器的影响。