Incorporating knowledge graph into recommendation is an effective way to alleviate data sparsity. Most existing knowledge-aware methods usually perform recursive embedding propagation by enumerating graph neighbors. However, the number of nodes' neighbors grows exponentially as the hop number increases, forcing the nodes to be aware of vast neighbors under this recursive propagation for distilling the high-order semantic relatedness. This may induce more harmful noise than useful information into recommendation, leading the learned node representations to be indistinguishable from each other, that is, the well-known over-smoothing issue. To relieve this issue, we propose a Hierarchical and CONtrastive representation learning framework for knowledge-aware recommendation named HiCON. Specifically, for avoiding the exponential expansion of neighbors, we propose a hierarchical message aggregation mechanism to interact separately with low-order neighbors and meta-path-constrained high-order neighbors. Moreover, we also perform cross-order contrastive learning to enforce the representations to be more discriminative. Extensive experiments on three datasets show the remarkable superiority of HiCON over state-of-the-art approaches.


翻译:将知识图谱融入推荐是缓解数据稀疏性的有效方法。大多数现有的知识感知方法通常通过枚举图邻居来执行递归嵌入传播。然而,随着跳数的增加,节点的邻居数量呈指数增长,迫使节点在此递归传播中了解到庞大的邻居以提取高阶语义相关性。这可能会给推荐带来更多有害的噪声而不是有用的信息,导致所学习的节点表示彼此难以区分,即众所周知的过度平滑问题。为了缓解这个问题,我们提出了一种基于分层和对比学习的知识感知推荐框架HiCON。具体而言,为了避免邻居的指数增长,我们提出了分层信息聚合机制,分别与低阶邻居和元路径约束的高阶邻居交互。此外,我们还执行跨阶对比学习,以使表示更具区分性。三个数据集上的广泛实验表明,HiCON相对于现有方法具有显着的优越性。

0
下载
关闭预览

相关内容

【WWW2021】兴趣感知消息传递图卷积神经网络的推荐
专知会员服务
44+阅读 · 2021年2月23日
专知会员服务
74+阅读 · 2020年9月1日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
最新10篇对比学习推荐前沿工作
机器学习与推荐算法
2+阅读 · 2022年9月14日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
WSDM2022推荐算法部分论文整理(附直播课程)
机器学习与推荐算法
0+阅读 · 2022年7月21日
浅聊对比学习(Contrastive Learning)第一弹
PaperWeekly
0+阅读 · 2022年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关VIP内容
【WWW2021】兴趣感知消息传递图卷积神经网络的推荐
专知会员服务
44+阅读 · 2021年2月23日
专知会员服务
74+阅读 · 2020年9月1日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员