A large-scale conversational agent can suffer from understanding user utterances with various ambiguities such as ASR ambiguity, intent ambiguity, and hypothesis ambiguity. When ambiguities are detected, the agent should engage in a clarifying dialog to resolve the ambiguities before committing to actions. However, asking clarifying questions for all the ambiguity occurrences could lead to asking too many questions, essentially hampering the user experience. To trigger clarifying questions only when necessary for the user satisfaction, we propose a neural self-attentive model that leverages the hypotheses with ambiguities and contextual signals. We conduct extensive experiments on five common ambiguity types using real data from a large-scale commercial conversational agent and demonstrate significant improvement over a set of baseline approaches.


翻译:大规模谈话代理可能因理解用户对诸如ASR模棱两可、意图含糊不清和假设含糊不清等各种模糊不清的言论而受到损害。当发现模棱两可时,该代理应进行澄清对话,在承诺采取行动之前解决模糊不清的问题。然而,就所有模糊不清事件提出澄清问题可能会导致提出过多的问题,从根本上妨碍用户的经验。为了在用户满意需要时才触发澄清问题,我们提议一种神经自觉模式,利用模糊不清和背景信号来利用这些假设。我们利用大型商业谈话代理提供的真实数据,对五种共同的模糊不清类型进行了广泛的实验,并展示了对一套基线方法的重大改进。

0
下载
关闭预览

相关内容

知识驱动的视觉知识学习,以VQA视觉问答为例,31页ppt
专知会员服务
35+阅读 · 2020年9月25日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
59+阅读 · 2019年8月26日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Generating Rationales in Visual Question Answering
Arxiv
5+阅读 · 2020年4月4日
Arxiv
4+阅读 · 2018年5月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员