Recent advances in unsupervised domain adaptation have seen considerable progress in semantic segmentation. Existing methods either align different domains with adversarial training or involve the self-learning that utilizes pseudo labels to conduct supervised training. The former always suffers from the unstable training caused by adversarial training and only focuses on the inter-domain gap that ignores intra-domain knowledge. The latter tends to put overconfident label prediction on wrong categories, which propagates errors to more samples. To solve these problems, we propose a two-stage adaptive semantic segmentation method based on the local Lipschitz constraint that satisfies both domain alignment and domain-specific exploration under a unified principle. In the first stage, we propose the local Lipschitzness regularization as the objective function to align different domains by exploiting intra-domain knowledge, which explores a promising direction for non-adversarial adaptive semantic segmentation. In the second stage, we use the local Lipschitzness regularization to estimate the probability of satisfying Lipschitzness for each pixel, and then dynamically sets the threshold of pseudo labels to conduct self-learning. Such dynamical self-learning effectively avoids the error propagation caused by noisy labels. Optimization in both stages is based on the same principle, i.e., the local Lipschitz constraint, so that the knowledge learned in the first stage can be maintained in the second stage. Further, due to the model-agnostic property, our method can easily adapt to any CNN-based semantic segmentation networks. Experimental results demonstrate the excellent performance of our method on standard benchmarks.


翻译:在未经监督的领域适应方面,最近的进展在语义分割方面取得了相当大的进展。现有的方法要么将不同领域与对抗性培训相匹配,要么采用使用假标签进行监管培训的自学方法。前者总是由于对抗性培训造成的不稳定培训而受到影响,而只侧重于忽视内部知识的跨领域差距。后者倾向于对错误类别进行过度自信标签预测,将错误传播到更多的样本中。为了解决这些问题,我们提议基于当地Lipschitz限制的两阶段适应性语义分割方法,既满足域对齐,又在统一的原则下进行特定域的探索。在第一阶段,我们提议将本地利普西茨定型规范作为目标功能,通过利用内部知识来调整不同领域,探索非对抗性适应性调和语义分割的可行方向。在第二阶段,我们使用本地的利普西茨定型规范来估计满足每个像的利普西茨立标的第二阶段的可能性,然后动态地设置假标签的门槛,既能满足域对域校准,又能进行自我学习。这种动态自我调节的自我调节功能,这种动态的自我调节方法可以避免在本地的学习阶段中进行。在不断的自我学习的自我调节方法上进行。通过进一步的自我调节,在学习的自我定位中,可以使本地的自我调节方法产生相同的自我调节,在正确的学习方法上进行。在进一步的自我调节,在正确的自我转换方法上产生。在正确的自我调节,可以导致。在进一步的自我学习的自我学习。在正确的自我学习。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
91+阅读 · 2021年6月3日
ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
2+阅读 · 2021年7月19日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员