This paper presents a novel data-driven framework to aid in system state estimation when the power system is under unobservable false data injection attacks. The proposed framework dynamically detects and classifies false data injection attacks. Then, it retrieves the control signal using the acquired information. This process is accomplished in three main modules, with novel designs, for detection, classification, and control signal retrieval. The detection module monitors historical changes in phasor measurements and captures any deviation pattern caused by an attack on a complex plane. This approach can help to reveal characteristics of the attacks including the direction, magnitude, and ratio of the injected false data. Using this information, the signal retrieval module can easily recover the original control signal and remove the injected false data. Further information regarding the attack type can be obtained through the classifier module. The proposed ensemble learner is compatible with harsh learning conditions including the lack of labeled data, concept drift, concept evolution, recurring classes, and independence from external updates. The proposed novel classifier can dynamically learn from data and classify attacks under all these harsh learning conditions. The introduced framework is evaluated w.r.t. real-world data captured from the Central New York Power System. The obtained results indicate the efficacy and stability of the proposed framework.
翻译:本文展示了一个新的数据驱动框架,以便在电力系统受到无法观测的虚假数据注入攻击时,协助系统状态估算。拟议框架动态地探测和分类虚假数据注入攻击。然后,它利用所获得的信息检索控制信号。这一过程在三个主要模块中完成,在检测、分类和控制信号检索方面有新的设计。检测模块监测散射测量的历史变化,捕捉复杂平面攻击造成的任何偏差模式。这一方法有助于揭示攻击的特点,包括被注入的虚假数据的方向、规模和比率。使用这一信息,信号检索模块可以很容易地恢复原始控制信号,并删除被注入的虚假数据。关于攻击类型的进一步信息可以通过分类模块获得。拟议的联合学习器与严酷的学习条件相容,包括缺乏标签数据、概念流、概念演进、重复的类别以及不受外部更新。拟议的新分类器可以在所有这些严酷的学习条件下动态地从数据中学习数据中学习,并分类分类。采用这一框架对实际世界数据检索的结果进行了评估。