Only when understanding hackers' tactics, can we thwart their attacks. With this spirit, this paper studies how hackers can effectively launch the so-called 'targeted node attacks', in which iterative attacks are staged on a network, and in each iteration the most important node is removed. In the existing attacks for weighted networks, the node importance is typically measured by the centralities related to shortest-path lengths, and the attack effectiveness is also measured mostly by length-related metrics. However, this paper argues that flows can better reflect network functioning than shortest-path lengths for those networks with carrying traffic as the main functionality. Thus, this paper proposes metrics based on flows for measuring the node importance and the attack effectiveness, respectively. Our node importance metrics include three flow-based centralities (flow betweenness, current-flow betweenness and current-flow closeness), which have not been proposed for use in the attacks on weighted networks yet. Our attack effectiveness metric is a new one proposed by us based on average network flow. Extensive experiments on both artificial and real-world networks show that the attack methods with our three suggested centralities are more effective than the existing attack methods when evaluated under our proposed attack effectiveness metric.


翻译:只有了解黑客的策略,我们才能挫败他们的攻击。 有了这种精神, 本文研究黑客如何能够有效地发动所谓的“ 定向节点攻击 ”, 即反复攻击在网络上进行, 并在每次循环中消除最重要的节点。 在现有的加权网络攻击中, 节点的重要性通常以与最短路径有关的中心来衡量, 攻击效力也大多以长度衡量。 但是, 本文认为, 流动可以更好地反映网络的功能, 而不是那些以交通为主要功能的网络的最短路径长度。 因此, 本文根据流量提出了衡量节点重要性和攻击效力的衡量标准。 我们的节点指标包括三个流动中心( 流动、 当前流动和当前流动之间的近距离), 这三个中心尚未被提议用于对加权网络的攻击。 我们的攻击效力指标是根据平均网络流动提出的新指标。 对人造网络和现实世界网络的广泛实验表明, 以我们提出的三种攻击方法, 在评估我们提出的攻击方法时, 其效力比现有的攻击方法要高。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月16日
Arxiv
13+阅读 · 2021年6月14日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员