Monte Carlo Tree Search (MCTS) is a technique to guide search in a large decision space by taking random samples and evaluating their outcome. In this work, we study MCTS methods in the context of the connection calculus and implement them on top of the leanCoP prover. This includes proposing useful proof-state evaluation heuristics that are learned from previous proofs, and proposing and automatically improving suitable MCTS strategies in this context. The system is trained and evaluated on a large suite of related problems coming from the Mizar proof assistant, showing that it is capable to find new and different proofs. To our knowledge, this is the first time MCTS has been applied to theorem proving.


翻译:蒙特卡洛树搜索(MCTS)是一种技术,通过随机抽样和对结果进行评估,引导大型决策空间的搜索。在这项工作中,我们在连接微积分的背景下研究MCTS方法,并在精密COP验证仪上实施,包括提出从以往证据中吸取的有用的证据-状态评价重力学,并在此背景下提出和自动改进适当的MCTS战略。该系统经过培训,对来自Mizar验证助理的大量相关问题进行了评估,表明它能够找到新的和不同的证据。据我们所知,这是首次将MCTS应用于理论验证。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
111+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
3+阅读 · 2018年10月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员