With the proliferation of deep generative models, deepfakes are improving in quality and quantity everyday. However, there are subtle authenticity signals in pristine videos, not replicated by SOTA GANs. We contrast the movement in deepfakes and authentic videos by motion magnification towards building a generalized deepfake source detector. The sub-muscular motion in faces has different interpretations per different generative models which is reflected in their generative residue. Our approach exploits the difference between real motion and the amplified GAN fingerprints, by combining deep and traditional motion magnification, to detect whether a video is fake and its source generator if so. Evaluating our approach on two multi-source datasets, we obtain 97.17% and 94.03% for video source detection. We compare against the prior deepfake source detector and other complex architectures. We also analyze the importance of magnification amount, phase extraction window, backbone network architecture, sample counts, and sample lengths. Finally, we report our results for different skin tones to assess the bias.
翻译:随着深层基因模型的扩散,深度假象在质量和数量上每天都在改善。然而,原始视频中有一些微妙的真实信号,SOTA GANs没有复制。我们通过运动放大来对比深层假象和真实视频的移动,以建立一个普遍的深层假象源探测器。次肌肉运动的面部对不同的基因模型有不同的解释,这些模型反映在基因残留中。我们的方法利用了真实运动和放大的GAN指纹之间的差别,将深层和传统运动放大结合起来,以检测视频是否是假的,如果是,则检测源代码。我们评估了我们两个多源数据集的方法,我们获得了97.17%和94.03%的视频源检测。我们比较了以前的深层假象源探测器和其他复杂的结构。我们还分析了放大量、阶段提取窗口、骨架网络结构、样本计数和样本长度的重要性。最后,我们报告了我们不同皮肤图案的结果,以评估偏差。