Many real-world scientific processes are governed by complex nonlinear dynamic systems that can be represented by differential equations. Recently, there has been increased interest in learning, or discovering, the forms of the equations driving these complex nonlinear dynamic system using data-driven approaches. In this paper we review the current literature on data-driven discovery for dynamic systems. We provide a categorization to the different approaches for data-driven discovery and a unified mathematical framework to show the relationship between the approaches. Importantly, we discuss the role of statistics in the data-driven discovery field, describe a possible approach by which the problem can be cast in a statistical framework, and provide avenues for future work.
翻译:许多现实世界的科学过程都由复杂的非线性动态系统管理,这些系统可以用不同的方程式来代表。最近,人们越来越有兴趣学习或发现以数据驱动的方法驱动这些复杂的非线性动态系统的方程式形式。在本文件中,我们审查了关于数据驱动的动态系统发现的现有文献。我们对数据驱动的发现的不同方法进行了分类,并提供了一个统一的数学框架,以显示这些方法之间的关系。重要的是,我们讨论了统计数据在数据驱动的发现领域的作用,描述了在统计框架中可以解决问题的可能方法,并为今后的工作提供了途径。