Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aim to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.
翻译:多数现有空档填充模型往往将实体的固有模式和相应背景与培训数据混为一谈,然而,这些模型在接触口语扰动或实践中的变异时,可能导致系统失灵或不良产出。我们提议了一种粗略的语义结构意识转移方法,用于培训扰动-罗布斯特空档填充模型。具体地说,我们引入了两个基于MLM的训练战略,分别从未经监督的语言扰动保护中学习背景语义结构和文字分布。然后,我们将上游培训程序所学的语义知识传输到通过一致性处理产生的原始样本和过滤器数据中。这些程序的目的是加强空档填充模型的稳健性。实验结果表明,我们的方法一贯优于以往的基本方法,并获得了强有力的概括性,同时防止模型在实体和背景的内在模式中进行记忆化。