Inducing semantic representations directly from speech signals is a highly challenging task but has many useful applications in speech mining and spoken language understanding. This study tackles the unsupervised learning of semantic representations for spoken utterances. Through converting speech signals into hidden units generated from acoustic unit discovery, we propose WavEmbed, a multimodal sequential autoencoder that predicts hidden units from a dense representation of speech. Secondly, we also propose S-HuBERT to induce meaning through knowledge distillation, in which a sentence embedding model is first trained on hidden units and passes its knowledge to a speech encoder through contrastive learning. The best performing model achieves a moderate correlation (0.5~0.6) with human judgments, without relying on any labels or transcriptions. Furthermore, these models can also be easily extended to leverage textual transcriptions of speech to learn much better speech embeddings that are strongly correlated with human annotations. Our proposed methods are applicable to the development of purely data-driven systems for speech mining, indexing and search.


翻译:直接从语音信号中引出语义表达方式是一项极具挑战性的任务,但在语音挖掘和口头语言理解方面有许多有用的应用。本研究解决了未经监督的语音表达方式的学习问题。通过将语音信号转换成声学单位发现产生的隐藏单元,我们提议WavEmbed,这是一个多式连续自动编码器,预测从密集的言语表达方式中隐藏的单位。第二,我们还提议S-HuBERT通过知识蒸馏来产生意义,其中一句嵌入式的句子首先在隐藏的单元上接受培训,并通过对比性学习将其知识传递给语音编码器。最佳表现模型与人类判断的中度相关性(0.5~0.6),而不必依赖任何标签或抄录。此外,这些模型还可以很容易扩展,以便利用文字文字抄录来学习与人类描述密切相关的更好语言嵌入。我们建议的方法适用于开发纯数据驱动的语音挖掘、索引和搜索系统。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月7日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
18+阅读 · 2020年10月9日
Arxiv
12+阅读 · 2020年6月20日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员