Causal discovery and causal effect estimation are two fundamental tasks in causal inference. While many methods have been developed for each task individually, statistical challenges arise when applying these methods jointly: estimating causal effects after running causal discovery algorithms on the same data leads to "double dipping," invalidating the coverage guarantees of classical confidence intervals. To this end, we develop tools for valid post-causal-discovery inference. Across empirical studies, we show that a naive combination of causal discovery and subsequent inference algorithms leads to highly inflated miscoverage rates; on the other hand, applying our method provides reliable coverage while achieving more accurate causal discovery than data splitting.


翻译:因果发现和因果效应估计是因果推断中两个基本的任务。虽然为每个任务单独开发了许多方法,但当同时将这些方法应用于同一数据时会出现统计挑战:在运行因果发现算法并在同一数据上进行因果效应估计后,会导致“双重使用”,从而使经典置信区间的覆盖保证无效。为此,我们开发了一些用于进行有效因果发现后推断的工具。通过实证研究,我们发现,单纯地组合因果发现和随后的推断算法会导致高度夸张的误覆盖率;另一方面,应用我们的方法可以提供可靠的覆盖,同时比数据分割实现更准确的因果发现。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【EMNLP2020】自然语言处理模型可解释性预测,182页ppt
专知会员服务
50+阅读 · 2020年11月19日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
相关论文
Arxiv
0+阅读 · 2023年5月11日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
110+阅读 · 2020年2月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员