EMNLP(Conference on Empirical Methods in Natural Language Processing)是计算语言学和自然语言处理领域的顶级国际会议,由ACL旗下SIGDAT组织,每年举办一次,Google Scholar计算语言学刊物指标中排名第二,是CCF-B类推荐会议。今年EMNLP 2020将于2020年11月16日至20日以在线会议的形式举办。本篇为大家带来EMNLP2020在线Tutorial《Interpreting Predictions of NLP Models》教程,系统性讲解了自然语言处理模型可解释性预测,不可错过!
虽然神经NLP模型具有高度的表示学习能力和良好性能,但它们也会以违反直觉的方式系统性失败,并且在决策过程中不透明。本教程将提供可解释技术的背景知识,即可解释NLP模型预测的方法。我们将首先将具体实例的解释置于理解模型的其他方法的上下文中(例如,探测,数据集分析)。接下来,我们将全面研究具体例子的解释,包括显著性映射、输入扰动(例如LIME、输入减少)、对抗性攻击和影响函数。除了这些描述之外,我们还将介绍为各种NLP任务创建和可视化解释的源代码。最后,我们将讨论该领域的开放问题,如评价、扩展和改进解释方法。
https://github.com/Eric-Wallace/interpretability-tutorial-emnlp2020/