The increasing penetration of intermittent distributed energy resources in power networks calls for novel planning and control methodologies which hinge on detailed knowledge of the grid. However, reliable information concerning the system topology and parameters may be missing or outdated for temporally varying electric distribution networks. This paper proposes an online learning procedure to estimate the network admittance matrix capturing topological information and line parameters. We start off by providing a recursive identification algorithm exploiting phasor measurements of voltages and currents. With the goal of accelerating convergence, we subsequently complement our base algorithm with a design-of-experiment procedure which maximizes the information content of data at each step by computing optimal voltage excitations. Our approach improves on existing techniques, and its effectiveness is substantiated by numerical studies on realistic testbeds.


翻译:断断续续分布的能源资源日益渗透到电力网络中,这就要求采用新的规划和控制方法,这取决于对电网的详细了解,然而,系统地形学和参数的可靠信息可能缺失或过时,供时间变化的电力分配网络使用。本文件建议采用在线学习程序来估计网络接纳矩阵,以收集地形信息和线参数。我们首先提供循环识别算法,利用电压和电流的散射测量。为了加速趋同,我们随后以设计实验程序补充我们的基础算法,通过计算最佳电压插图,最大限度地增加每一步骤的数据信息内容。我们的方法改进了现有技术,并通过对现实测试床进行数字研究来证实其有效性。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
31+阅读 · 2021年6月12日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
5+阅读 · 2020年6月16日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
8+阅读 · 2018年5月15日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
相关论文
Top
微信扫码咨询专知VIP会员