We consider the solution of large stiff systems of ordinary differential equations with explicit exponential Runge--Kutta integrators. These problems arise from semi-discretized semi-linear parabolic partial differential equations on continuous domains or on inherently discrete graph domains. A series of results reduces the requirement of computing linear combinations of $\varphi$-functions in exponential integrators to the approximation of the action of a smaller number of matrix exponentials on certain vectors. State-of-the-art computational methods use polynomial Krylov subspaces of adaptive size for this task. They have the drawback that the required Krylov subspace iteration numbers to obtain a desired tolerance increase drastically with the spectral radius of the discrete linear differential operator, e.g., the problem size. We present an approach that leverages rational Krylov subspace methods promising superior approximation qualities. We prove a novel a-posteriori error estimate of rational Krylov approximations to the action of the matrix exponential on vectors for single time points, which allows for an adaptive approach similar to existing polynomial Krylov techniques. We discuss pole selection and the efficient solution of the arising sequences of shifted linear systems by direct and preconditioned iterative solvers. Numerical experiments show that our method outperforms the state of the art for sufficiently large spectral radii of the discrete linear differential operators. The key to this are approximately constant rational Krylov iteration numbers, which enable a near-linear scaling of the runtime with respect to the problem size.
翻译:我们考虑使用显式指数Runge-Kutta积分器解决大规模的强刚度常微分方程组。这些问题源于在连续域或固有离散图域上的半离散半线性抛物型偏微分方程。一系列结果将指数积分器中计算$\varphi$函数的线性组合的要求降低为对某些向量的一些矩阵指数的作用的近似。目前的计算方法使用自适应多项式Krylov子空间来完成此任务。它们的缺点是为了达到所需的精度,所需的Krylov子空间迭代次数随离散线性微分算子的谱半径(例如问题大小)呈指数级增长。我们提出了一种利用有理Krylov子空间方法的方法,这种方法具有比多项式Krylov技术更好的逼近质量。我们证明了有理Krylov逼近对于单个时间点的矩阵指数对向量的作用的后验误差估计,这允许类似于现有的多项式Krylov技术的自适应方法。我们讨论了极点选择和通过直接和预处理迭代求解出现的序列移位线性系统的有效解。数值实验表明,我们的方法在离散线性微分算子具有足够大的谱半径时优于现有技术水平。关键是近似恒定的有理Krylov迭代次数,这使得运行时间与问题大小几乎呈线性关系。