Animals locomote for various reasons: to search for food, find suitable habitat, pursue prey, escape from predators, or seek a mate. The grand scale of biodiversity contributes to the great locomotory design and mode diversity. Various creatures make use of legs, wings, fins and other means to move through the world. In this report, we refer to the locomotion of general biological species as biolocomotion. We present a computational approach to detect biolocomotion in unprocessed video. Significantly, the motion exhibited by the body parts of a biological entity to navigate through an environment can be modeled by a combination of an overall positional advance with an overlaid asymmetric oscillatory pattern, a distinctive signature that tends to be absent in non-biological objects in locomotion. We exploit this key trait of positional advance with asymmetric oscillation along with differences in an object's common motion (extrinsic motion) and localized motion of its parts (intrinsic motion) to detect biolocomotion. An algorithm is developed to measure the presence of these traits in tracked objects to determine if they correspond to a biological entity in locomotion. An alternative algorithm, based on generic features combined with learning is assembled out of components from allied areas of investigation, also is presented as a basis of comparison. A novel biolocomotion dataset encompassing a wide range of moving biological and non-biological objects in natural settings is provided. Also, biolocomotion annotations to an extant camouflage animals dataset are provided. Quantitative results indicate that the proposed algorithm considerably outperforms the alternative approach, supporting the hypothesis that biolocomotion can be detected reliably based on its distinct signature of positional advance with asymmetric oscillation and extrinsic/intrinsic motion dissimilarity.


翻译:由于各种原因,动物在动物身上漂移:寻找食物、寻找合适的栖息地、寻找猎物、逃离掠食者或寻找伴侣。生物多样性的庞大规模有助于巨大的运动设计和模式多样性。各种生物利用腿、翅膀、鳍和其他手段穿越世界。我们在本报告中将一般生物物种的移动称为生物振荡,称为生物振荡。我们提出一种计算方法,以在未经处理的视频中检测生物浮转。重要的是,生物实体身体部位为在环境中航行而展示的动作可以通过整体定位进步与超长的不对称血管结构模式相结合来模拟。一种独特的标志往往存在于非生物物体中,一种独特的标志往往存在于生物运动中。我们利用这种定位特征与不对称的振荡以及一个物体的普通运动(极端运动)和其部分的局部运动(内部运动)来检测生物振动。我们开发一种算法,用来测量这些非定位在轨迹中的位置,一种超长的不对称的不对称的视觉形态形态模式,如果在生物运动部位上显示它们与生物体的变现基础,则提供其变异的内的数据。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
2+阅读 · 2021年7月16日
Arxiv
20+阅读 · 2020年6月8日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
6+阅读 · 2018年2月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员