The properties of flat minima in the empirical risk landscape of neural networks have been debated for some time. Increasing evidence suggests they possess better generalization capabilities with respect to sharp ones. First, we discuss Gaussian mixture classification models and show analytically that there exist Bayes optimal pointwise estimators which correspond to minimizers belonging to wide flat regions. These estimators can be found by applying maximum flatness algorithms either directly on the classifier (which is norm independent) or on the differentiable loss function used in learning. Next, we extend the analysis to the deep learning scenario by extensive numerical validations. Using two algorithms, Entropy-SGD and Replicated-SGD, that explicitly include in the optimization objective a non-local flatness measure known as local entropy, we consistently improve the generalization error for common architectures (e.g. ResNet, EfficientNet). An easy to compute flatness measure shows a clear correlation with test accuracy.
翻译:神经网络实验风险景观中平坦微粒的特性已经辩论了一段时间。 越来越多的证据表明它们拥有较强的简单化能力。 首先, 我们讨论高斯混合分类模型, 并分析地显示, 存在贝耶斯最佳的点度估计器, 与属于大平坦区域的最小化器相对应。 这些估计器可以通过直接对分类器( 常规独立) 或对学习中使用的可区分损失函数应用最大比例算法来找到。 其次, 我们通过广泛的数字验证, 将分析扩大到深层学习情景。 使用两种算法, 即 Entropy- SGD 和 复制的SGD, 在优化目标中明确包括一种非本地的平坦度测量器, 我们不断改进通用结构( 如 ResNet, 高效网络) 的通用错误。 很容易计算的平坦度测量器显示与测试精确度之间的明确关联性 。