Traditional domain adaptation addresses the task of adapting a model to a novel target domain under limited or no additional supervision. While tackling the input domain gap, the standard domain adaptation settings assume no domain change in the output space. In semantic prediction tasks, different datasets are often labeled according to different semantic taxonomies. In many real-world settings, the target domain task requires a different taxonomy than the one imposed by the source domain. We therefore introduce the more general taxonomy adaptive domain adaptation (TADA) problem, allowing for inconsistent taxonomies between the two domains. We further propose an approach that jointly addresses the image-level and label-level domain adaptation. On the label-level, we employ a bilateral mixed sampling strategy to augment the target domain, and a relabelling method to unify and align the label spaces. We address the image-level domain gap by proposing an uncertainty-rectified contrastive learning method, leading to more domain-invariant and class discriminative features. We extensively evaluate the effectiveness of our framework under different TADA settings: open taxonomy, coarse-to-fine taxonomy, and partially-overlapping taxonomy. Our framework outperforms previous state-of-the-art by a large margin, while capable of adapting to new target domain taxonomies.


翻译:传统领域适应涉及在有限或不增加额外监督下将模型适应到一个新目标领域的任务。在解决投入领域差距时,标准领域适应设置假定产出空间没有领域变化。在语义预测任务中,不同的数据集往往根据不同的语义分类标签标签。在许多现实世界环境中,目标领域任务要求一种不同于源领域所强加的分类法。因此,我们引入了更普遍的分类适应领域适应性适应(TADA)问题,允许两个领域之间的分类不一致。我们进一步提出了一种共同处理图像水平和标签级别域适应的方法。在标签层面,我们采用双边混合抽样战略来扩大目标领域,并重新标注统一和统一标签空间的方法。我们通过提出一种不确定性和经过整理的对比性学习方法来解决图像层面的差距,从而导致更多的域性差异性和等级歧视性特征。我们广泛评估了我们在不同的塔达环境下的框架的有效性:公开的税制、可分析的税级税制税制和标签级级调整,同时通过先前的税制大域框架进行部分调整。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
2021互联网行业挑战与机遇白皮书
专知会员服务
24+阅读 · 2021年11月1日
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
《人工智能2020:落地挑战与应对 》56页pdf
专知会员服务
195+阅读 · 2020年3月8日
利用Uncertainty修正Domain Adaptation中的伪标签
极市平台
3+阅读 · 2020年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
16+阅读 · 2021年7月18日
Arxiv
8+阅读 · 2020年8月30日
Arxiv
5+阅读 · 2020年3月17日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员