Machine learning algorithms have been effectively applied into various real world tasks. However, it is difficult to provide high-quality machine learning solutions to accommodate an unknown distribution of input datasets; this difficulty is called the uncertainty prediction problems. In this paper, a margin-based Pareto deep ensemble pruning (MBPEP) model is proposed. It achieves the high-quality uncertainty estimation with a small value of the prediction interval width (MPIW) and a high confidence of prediction interval coverage probability (PICP) by using deep ensemble networks. In addition to these networks, unique loss functions are proposed, and these functions make the sub-learners available for standard gradient descent learning. Furthermore, the margin criterion fine-tuning-based Pareto pruning method is introduced to optimize the ensembles. Several experiments including predicting uncertainties of classification and regression are conducted to analyze the performance of MBPEP. The experimental results show that MBPEP achieves a small interval width and a low learning error with an optimal number of ensembles. For the real-world problems, MBPEP performs well on input datasets with unknown distributions datasets incomings and improves learning performance on a multi task problem when compared to that of each single model.


翻译:机器学习算法被有效地应用于各种真实的世界任务中。然而,很难提供高质量的机器学习方法,以适应输入数据集的未知分布;这一困难被称为不确定性预测问题。在本文中,提出了基于边际的Pareto 深合金运行模型(MBPEP) 。它以预测间隔宽度(MPIW)的小值和预测间隔概率(PICP)的高度信任度来达到高质量的不确定性估算,使用深厚的混合网络来分析预测间隔概率(PICP)。除了这些网络之外,还提出了独特的损失函数,这些函数使子利差者可用于标准梯度下沉学习。此外,为了优化组合,还采用了基于边差的微调Pareto 运行方法。进行了一些实验,包括预测分类和回归的不确定性,以分析MBPPEPEP的性能。实验结果显示,MBPEP达到一个小的间隔宽度和低学习错误,以最优的组合数。对于现实世界的问题,MBEP在投入数据配置的多功能上很好地进行了比较,以学习每个未知的多式数据。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
12+阅读 · 2019年2月26日
Deep Randomized Ensembles for Metric Learning
Arxiv
5+阅读 · 2018年9月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员