The class of Euclidean unit disk graphs is one of the most fundamental and well-studied graph classes with underlying geometry. In this paper, we identify this class as a special case in the broader class of \emph{hyperbolic unit disk graphs} and introduce \emph{strongly hyperbolic unit disk graphs} as a natural counterpart to the Euclidean variant. In contrast to the grid-like structures exhibited by Euclidean unit disk graphs, strongly hyperbolic networks feature hierarchical structures, which are also observed in complex real-world networks. We investigate basic properties of strongly hyperbolic unit disk graphs, including adjacencies and the formation of cliques, and utilize the derived insights to demonstrate that the class is useful for the development and analysis of graph algorithms. Specifically, we develop a simple greedy routing scheme and analyze its performance on strongly hyperbolic unit disk graphs in order to prove that routing can be performed more efficiently on such networks than in general.
翻译:Euclidean 单元磁盘图是具有基本几何特征的最基本和最受广泛研究的图形类之一。 在本文中,我们将这一类确定为大类 \ emph{ hyperbolic 单元磁盘图 } 的特殊案例, 并引入 emph{ 强烈超曲单磁盘图 } 作为 Euclidean 变量的自然对应方。 与 Euclidean 单元磁盘图所展示的类似网格的结构不同, 强烈的双曲网络具有等级结构, 复杂的现实世界网络中也观察到这种结构。 我们调查了强烈超双曲磁盘图的基本特性, 包括相邻和形成 cliques, 并使用衍生的洞见来证明该类对图形算法的开发和分析有用。 具体地说, 我们开发了一个简单的贪婪路线计划, 并用非常高超偏向的磁盘图分析其性能, 以证明在这种网络上可以比一般地更高效地运行。