Modern day applications, especially information retrieval webapps that involve "search" as their use cases are gradually moving towards "answering" modules. Conversational chatbots which have been proved to be more engaging to users, use Question Answering as their core. Since, precise answering is computationally expensive, several approaches have been developed to prefetch the most relevant documents/passages from the database that contain the answer. We propose a different approach that retrieves the evidence documents efficiently and accurately, making sure that the relevant document for a given user query is not missed. We do so by assigning each document (or passage in our case), a unique identifier and using them to create dense vectors which can be efficiently indexed. More precisely, we use the identifier to predict randomly sampled context window words of the relevant question corresponding to the passage along with the words of passage itself. This naturally embeds the passage identifier into the vector space in such a way that the embedding is closer to the question without compromising he information content. This approach enables efficient creation of real-time query vectors in ~4 milliseconds.
翻译:现代日间应用程序,特别是信息检索网络应用程序,其中涉及“ 搜索”, 因为它们的使用案例正在逐渐转向“ 回答” 模块。 对话式聊天机, 事实证明它们更接触用户, 使用问答作为核心。 由于精确回答是计算昂贵的, 已经开发出几种方法, 预展包含答案的数据库中最相关的文档/ 通道。 我们建议了一种不同的方法, 以有效和准确的方式检索证据文件, 确保特定用户查询的相关文件不会丢失。 我们这样做的方式是指定每个文档( 或我们情况下的段落), 一个独特的识别器, 并用它们来创建可以高效索引化的密度矢量。 更准确地说, 我们使用该识别器来随机抽样预测与通道本身对应的相关问题的上下文窗口字。 这自然将通道识别符嵌入矢量空间, 从而在不损及他信息内容的情况下更接近问题 。 这种方法可以有效地在~ 4 毫秒内创建实时查询矢量矢量的实时矢量 。