For natural language processing systems, two kinds of evidence support the use of text representations from neural language models "pretrained" on large unannotated corpora: performance on application-inspired benchmarks (Peters et al., 2018, inter alia), and the emergence of syntactic abstractions in those representations (Tenney et al., 2019, inter alia). On the other hand, the lack of grounded supervision calls into question how well these representations can ever capture meaning (Bender and Koller, 2020). We apply novel probes to recent language models -- specifically focusing on predicate-argument structure as operationalized by semantic dependencies (Ivanova et al., 2012) -- and find that, unlike syntax, semantics is not brought to the surface by today's pretrained models. We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning, yielding benefits to natural language understanding (NLU) tasks in the GLUE benchmark. This approach demonstrates the potential for general-purpose (rather than task-specific) linguistic supervision, above and beyond conventional pretraining and finetuning. Several diagnostics help to localize the benefits of our approach.
翻译:对于自然语言处理系统,有两种证据支持使用神经语言模型的文字表述方式,即大型无附加说明的Corsora的“预设”:应用激励基准的性能(Peters等人,2018年,除其他外),以及这些表达方式中出现的合成抽象(Tenney等人,2019年,等等)另一方面,缺乏有根据的监督使人怀疑这些表达方式能够抓住意义的程度(Bender和Koller,2020年);我们对最近的语言模型采用新的探索方法 -- -- 具体侧重于由语义依赖性(Ivanova等人,2012年)操作的上游解释结构 -- -- 并发现,与今天的预设模式不同的是,语义学没有被带到表面。然后,我们使用进化图导导器将语义表达方式明确纳入特定任务的微调中,从而在GLUE的基准中产生自然语言理解(NLU)任务的好处。这一方法展示了一般用途(而不是特定任务)语言监督办法(Ivanova等人,2012年)的潜力,并发现,与今天的预设式模式不同,我们采用常规培训前和微调的局部语言效益。