In \cite{Bapic, Tang, Zheng} a new method for the secondary construction of vectorial/Boolean bent functions via the so-called $(P_U)$ property was introduced. In 2018, Qi et al. generalized the methods in \cite{Tang} for the construction of $p$-ary weakly regular bent functions. The objective of this paper is to further generalize these constructions, following the ideas in \cite{Bapic, Zheng}, for secondary constructions of vectorial $p$-ary weakly regular bent and plateaued functions. We also present some infinite families of such functions via the $p$-ary Maiorana-McFarland class. Additionally, we give another characterization of the $(P_U)$ property for the $p$-ary case via second-order derivatives, as it was done for the Boolean case in \cite{Zheng}.
翻译:在\cite{Bapic,唐,郑}中,采用了一种新的方法,通过所谓的$(P_U)财产进行二次构造矢量/Boolean弯曲函数。在2018年,Qi等人推广了在\cite{Tang}中,用于建造美元差的固定弯曲函数的方法。本文件的目的是根据在\cite{Bapic,Zheng}中的想法,进一步将这些构造概括化,用于在二次构造中,为矢量($-ary)微调弯曲曲和高位函数进行二次构造。我们还通过Maiorana-McFarland 类($-P$-P_U)提出一些这种函数的无限家族。此外,我们用二级衍生物对美元(P_U)财产的定性,如在\cite_heng}Boolean案中所做的那样。