Cervical cancer is one of the most deadly and common diseases among women worldwide. It is completely curable if diagnosed in an early stage, but the tedious and costly detection procedure makes it unviable to conduct population-wise screening. Thus, to augment the effort of the clinicians, in this paper, we propose a fully automated framework that utilizes Deep Learning and feature selection using evolutionary optimization for cytology image classification. The proposed framework extracts Deep feature from several Convolution Neural Network models and uses a two-step feature reduction approach to ensure reduction in computation cost and faster convergence. The features extracted from the CNN models form a large feature space whose dimensionality is reduced using Principal Component Analysis while preserving 99% of the variance. A non-redundant, optimal feature subset is selected from this feature space using an evolutionary optimization algorithm, the Grey Wolf Optimizer, thus improving the classification performance. Finally, the selected feature subset is used to train an SVM classifier for generating the final predictions. The proposed framework is evaluated on three publicly available benchmark datasets: Mendeley Liquid Based Cytology (4-class) dataset, Herlev Pap Smear (7-class) dataset, and the SIPaKMeD Pap Smear (5-class) dataset achieving classification accuracies of 99.47%, 98.32% and 97.87% respectively, thus justifying the reliability of the approach. The relevant codes for the proposed approach can be found in: https://github.com/DVLP-CMATERJU/Two-Step-Feature-Enhancement
翻译:宫颈癌是全世界妇女中最致命和最常见的疾病之一,如果在早期阶段诊断出来,它完全可以治愈。如果在早期诊断出来,它完全可以治愈,但是由于繁琐和昂贵的检测程序,无法进行人口明智的筛查。因此,为了加强临床医生的努力,我们在本文件中提议了一个完全自动化的框架,利用深度学习和特征选择,利用细胞学图像分类的进化优化方法进行进化优化。拟议框架从多个进化神经网络模型中提取深度特征,并使用两步特征降低方法,以确保计算成本的降低和更快的趋同。从CNN模型中提取的特征形成了一个巨大的特征空间,在保存99%的差异的同时,其维度会减少。为了加强临床医生们的努力,我们提议了一个非冗余的、最佳的特性子集,使用进化优化算法,即灰沃尔夫·奥皮质化器,从而改进了分类工作绩效。最后,所选的子集用于培训SVM分类,以得出最后的预测。拟议的框架可以在三个公开的基准数据集上进行评估:Medley liclening Claud Cyard (4-Dlevel) 和Sieleval-deal-Dal-Dal-Slieval-Dalse-Syard-Dalse-Shal-Sqalse-Shal-Slips) 数据系统(Syard-Salib-Syard-Syation-Syal-Syard-Syard-Syard-Syard-Syard-D-Sqtalse-Sqtalse-D-Slips)。