Disruptive technologies provides unparalleled opportunities to contribute to the identifications of many aspects in pervasive healthcare, from the adoption of the Internet of Things through to Machine Learning (ML) techniques. As a powerful tool, ML has been widely applied in patient-centric healthcare solutions. To further improve the quality of patient care, Electronic Health Records (EHRs) are widely applied in healthcare facilities nowadays. Due to the inherent heterogeneity, unbalanced, incompleteness, and high-dimensional nature of EHRs, it is a challenging task to employ machine learning algorithms to analyse such EHRs for prediction and diagnostics within the scope of precision medicine. Dimensionality reduction is an efficient data preprocessing technique for the analysis of high dimensional data that reduces the number of features while improving the performance of the data analysis, e.g. classification. In this paper, we propose an efficient curvature-based feature selection method for supporting more precise diagnosis. The proposed method is a filter-based feature selection method, which directly utilises the Menger Curvature for ranking all the attributes in the given data set. We evaluate the performance of our method against conventional PCA and recent ones including BPCM, GSAM, WCNN, BLS II, VIBES, 2L-MJFA, RFGA, and VAF. Our method achieves state-of-the-art performance on four benchmark healthcare data sets including CCRFDS, BCCDS, BTDS, and DRDDS with impressive 24.73% and 13.93% improvements respectively on BTDS and CCRFDS, 7.97% improvement on BCCDS, and 3.63% improvement on DRDDS. Our CFS source code is publicly available at https://github.com/zhemingzuo/CFS.
翻译:破坏性技术提供了无与伦比的机会,有助于查明从采用互联网到机器学习(ML)技术等普遍保健的诸多方面,从采用互联网到机器学习(ML)技术。作为一个强有力的工具,ML被广泛应用于以病人为中心的保健解决方案。为了进一步提高病人护理的质量,电子健康记录(EHR)现在被广泛应用于保健设施。由于电子健康记录(EHR)固有的异质性、不平衡、不完善和高度性质,采用机器学习算法来分析在精确医学范围内进行预测和诊断的EHR(EHR)是一项具有挑战性的任务。降低尺寸是一种高效的数据预处理技术,用于分析高维度数据,以减少特征的数量,同时改进数据分析的绩效,例如分类。在本文中,我们提出了一种高效的基于曲线的特征选择方法,以支持更精确的诊断。 拟议的方法是一种基于过滤的特征选择方法,它直接利用Menger CRV63 CRV, 用于在特定数据集中的所有属性的改进。我们对照常规的CARCA-RFS-RFS的改进方法的绩效和最近的一些方法,包括CA-SA-RFS-RFS-RFS、B-RFS-R-RFS-RB-RFS-R-S-RM-RM-RM 3 和B-S-R-S的成绩的成绩的成绩-RFS-S-S-S-S-RFSFS-S-S-S-R 和B-B-S-S-S-RFS-S-B-C-B-C-RFSFS-R-R-R-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-R-S-S-S-S-S-S-S-S-S-SDSD-S-SDSDSDSDS-S-S-SDSDS-S-S-S-R-R-S-S-R-S-S-S-S-S-S-S-S-S-S-R-S-S-S-S-B-B-B-S-S-S-