Count data occur widely in many bio-surveillance and healthcare applications, e.g., the numbers of new patients of different types of infectious diseases from different cities/counties/states repeatedly over time, say, daily/weekly/monthly. For this type of count data, one important task is the quick detection and localization of hot-spots in terms of unusual infectious rates so that we can respond appropriately. In this paper, we develop a method called Poisson assisted Smooth Sparse Tensor Decomposition (PoSSTenD), which not only detects when hot-spots occur but also localizes where hot-spots occur. The main idea of our proposed PoSSTenD method is articulated as follows. First, we represent the observed count data as a three-dimensional tensor including (1) a spatial dimension for location patterns, e.g., different cities/countries/states; (2) a temporal domain for time patterns, e.g., daily/weekly/monthly; (3) a categorical dimension for different types of data sources, e.g., different types of diseases. Second, we fit this tensor into a Poisson regression model, and then we further decompose the infectious rate into two components: smooth global trend and local hot-spots. Third, we detect when hot-spots occur by building a cumulative sum (CUSUM) control chart and localize where hot-spots occur by their LASSO-type sparse estimation. The usefulness of our proposed methodology is validated through numerical simulation studies and a real-world dataset, which records the annual number of 10 different infectious diseases from 1993 to 2018 for 49 mainland states in the United States.
翻译:计数数据在许多生物监视和保健应用中广泛出现,例如,不同城市/州/州/州在不同时期反复出现不同类型传染病的新患者人数,例如,每天/每周/每月。对于这类计数数据,一项重要任务是快速检测热点并定位异常传染病率,以便我们做出适当反应。在本文中,我们开发了一种名为Poisson 协助的平滑 Sparse Tensor Decomposition(POSSTenD)的方法,这种方法不仅在热点出现时发现新的不同类型传染病患者的人数,而且将热点出现的地方化。我们提议的POSSTenD方法的主要目的如下。首先,我们将观察到的计数数据作为三维抗体计数,包括:(1) 定位模式的空间层面,例如不同的城市/州/州/州/州/州/州/州/月/日/月/日;(3) 不同类型数据源的直线维度,例如,在热点点发生的地方,然后,不同类型疾病,我们将这一阵列的阵列的阵列的阵列记录纳入了1993年历史趋势。