In mortality modelling, cohort effects are often taken into consideration as they add insights about variations in mortality across different generations. Statistically speaking, models such as the Renshaw-Haberman model may provide a better fit to historical data compared to their counterparts that incorporate no cohort effects. However, when such models are estimated using an iterative maximum likelihood method in which parameters are updated one at a time, convergence is typically slow and may not even be reached within a reasonably established maximum number of iterations. Among others, the slow convergence problem hinders the study of parameter uncertainty through bootstrapping methods. In this paper, we propose an intuitive estimation method that minimizes the sum of squared errors between actual and fitted log central death rates. The complications arising from the incorporation of cohort effects are overcome by formulating part of the optimization as a principal component analysis with missing values. We also show how the proposed method can be generalized to variants of the Renshaw-Haberman model with further computational improvement, either with a simplified model structure or an additional constraint. Using mortality data from the Human Mortality Database (HMD), we demonstrate that our proposed method produces satisfactory estimation results and is significantly more efficient compared to the traditional likelihood-based approach.
翻译:暂无翻译