Majorly classical Active Learning (AL) approach usually uses statistical theory such as entropy and margin to measure instance utility, however it fails to capture the data distribution information contained in the unlabeled data. This can eventually cause the classifier to select outlier instances to label. Meanwhile, the loss associated with mislabeling an instance in a typical classification task is much higher than the loss associated with the opposite error. To address these challenges, we propose a Cost-Based Bugdet Active Learning (CBAL) which considers the classification uncertainty as well as instance diversity in a population constrained by a budget. A principled approach based on the min-max is considered to minimize both the labeling and decision cost of the selected instances, this ensures a near-optimal results with significantly less computational effort. Extensive experimental results show that the proposed approach outperforms several state-of -the-art active learning approaches.


翻译:主要古典主动学习(AL)方法通常使用统计理论,如英特罗比和差值来衡量实例效用,但未能捕捉未贴标签数据中的数据分发信息。这最终可能导致分类者选择外部标签。与此同时,典型分类任务中误贴实例标签引起的损失远远高于与相反错误有关的损失。为了应对这些挑战,我们建议采用成本基虫代特积极学习(CBAL)方法,该方法既考虑分类不确定性,也考虑受预算制约的人口的多样性。基于最小最大值的原则方法被认为能够最大限度地减少选定实例的标签和决定成本,从而确保接近最佳的结果,同时大大降低计算努力。广泛的实验结果显示,拟议的方法优于若干状态的、最先进的积极学习方法。

0
下载
关闭预览

相关内容

主动学习是机器学习(更普遍的说是人工智能)的一个子领域,在统计学领域也叫查询学习、最优实验设计。“学习模块”和“选择策略”是主动学习算法的2个基本且重要的模块。 主动学习是“一种学习方法,在这种方法中,学生会主动或体验性地参与学习过程,并且根据学生的参与程度,有不同程度的主动学习。” (Bonwell&Eison 1991)Bonwell&Eison(1991) 指出:“学生除了被动地听课以外,还从事其他活动。” 在高等教育研究协会(ASHE)的一份报告中,作者讨论了各种促进主动学习的方法。他们引用了一些文献,这些文献表明学生不仅要做听,还必须做更多的事情才能学习。他们必须阅读,写作,讨论并参与解决问题。此过程涉及三个学习领域,即知识,技能和态度(KSA)。这种学习行为分类法可以被认为是“学习过程的目标”。特别是,学生必须从事诸如分析,综合和评估之类的高级思维任务。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
深度学习界圣经“花书”《Deep Learning》中文版来了
专知会员服务
233+阅读 · 2019年10月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
多任务学习(Multi-task Learning)方法总结
极市平台
6+阅读 · 2020年4月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
0+阅读 · 2021年2月10日
Arxiv
0+阅读 · 2021年2月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
多任务学习(Multi-task Learning)方法总结
极市平台
6+阅读 · 2020年4月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
小样本学习(Few-shot Learning)综述
PaperWeekly
120+阅读 · 2019年4月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关论文
Arxiv
0+阅读 · 2021年2月10日
Arxiv
0+阅读 · 2021年2月10日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
9+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员